Unit - 1

Basics

of

Transmission of Light

#### RAY THEORY TRANSMISSION

REF INDEX

# VELOCITY OF LIGHT IN VACCUM VELOCITY OF LIGHT IN THE MEDIUM

• THE DENSER THE MEDIUM, THE LOWER IS THE VELOCITY OF LIGHT



SNELL'S LAW N1 SIN  $\phi_1$  = N2 SIN  $\phi_2$  CRITICAL ANGLE( $\phi_c$ ) ANGLE OF INCIDENCE FOR WHICH ANGLE OF REFRACTION IS 90°

NI SIN  $\phi_C$  = N2 N1/N2= 1/SIN  $\phi_C$  OR SIN  $\phi_C$  = N2/N1

AT ANGLE OF INCIDENCE, GREATER THAN  $\phi_{c_j}$  THE LIGHT IS REFLECTED BACK INTO THE ORGINATING DIELECTRIC MEDIUM ( $\eta=99.9\%$ )

→ TOTAL INTERNAL REFLECTION .



- NOT ALL RAYS ENTERING THE FIBER CORE WLL CONTINUE TO BE PROPAGATED DOWN ITS LENGTH.
- -RAYS TO BE TRANSMITTED BY TIR WITHIN THE FIBER CORE MUST BE INCIDENT ON THE FIBER CORE WITHIN THE ACCEPTANCE CONE( HALF ANGLE=  $\phi_a$ )
- $\phi_{a=}$  MAXIMUM ACCEPTANCE ANGLE FOR THE FIBER.

## **NUMERICAL APERTURE (NA)**



THREE MEDIA- CORE/ CLADDING/ AIR

$$\theta_1 < \theta_a$$
 (ACCEPANCE ANGLE)

$$N_2 < N_1$$

## TOTAL INTERNAL REFLECTION (THR)



- TIR OCCURS WHEN ANGLE OF INCIDENCE EXCEEDS THE CRITICAL ANGLE.
- -LIGHT TRAVELS DOWN AN OPTICAL FIBER AT A SHALLOW ANGLE (LESS THAN  $90^{\circ}$  - $\phi c$ )VIA A SERIES OF TOTAL INTERNAL REFLECTIONS



### TRANSMISSION OF LIGHT RAY IN A PERFECT OPTICAL FIBER

IMPERFECTIONS AT THE CORE CLADDING INTERFACE WOULD RESULT IN LOSSES OF THE LIGHT RAY INTO THE CLADDING

$$N_0 SIN\theta_1 = N_1 SIN \theta_2 -----1$$

IN
$$\triangle$$
 ABC  $\phi = \pi/2 - \theta_2$  OR  $\theta_2 = (\pi/2 - \phi)$  WHERE  $\phi > \phi_C$ 

EQUATION (1) BECOMES 
$$N_0 SIN \theta_1 = N_1 SIN \theta_2 = N_1 SIN (\pi/2 - \phi)$$

i.e. 
$$N_0 SIN \theta_1 = N_1 COS \phi$$

USING 
$$SIN^2 \phi + COS^2 \phi = 1$$

$$N_0 SIN \theta_1 = N_1 (1-SIN^2 \phi)^{1/2}$$

## LIMITING CASE FOR TIR

$$\phi = \phi_{c}, \, \theta_{1} = \theta_{a}, \, SIN \, \phi_{c} = N_{2}/N_{1}$$

$$N_{0} \, SIN\theta_{a} = N_{1} \, (1 - N_{2}^{2}/N_{1}^{2})^{\frac{1}{2}} = (N_{1}^{2} - N_{2}^{2})^{\frac{1}{2}}$$

$$NA = N_{0} \, SIN \, \theta_{a} = (N_{1}^{2} - N_{2}^{2})^{\frac{1}{2}} = \sin\theta_{a}$$

(SINCE  $N_0 = 1$  FOR AIR)

THE OPTICAL RAY WILL BE PROPAGATED ALONG THE FIBER FOR  $0 \le \theta_1 \le \theta_a$ 

NA IS INDEPENDENT OF THE FIBER CORE DIA

LET  $\Delta = N_1^2 - N_2^2 / 2N_1^2 = RELATIVE REF. INDEX DIFF. BETWEEN CORE & CLADDING.$ 

HENCE NA =  $N_1$  (2  $\Delta$ ) ½